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ABSTRACT 
This paper, deals with the  uncertainty relation for photons. In [Phys.Rev.Let.108, 140401 (2012)], and [1] the 

uncertainty relation was obtained as a sharp inequality by using the energy distribution on space. The relation we 

obtain here is an alternative to the one given in [Phys.Rev.Let.108, 140401 (2012)] by the use of the position of the 

center of the energy operator. The fact that the components of the center is non commutative affected the right hand 

side of the Heisenberg  inequality.  But this resolved by the increase of the photon energy. Furthermore we study the 

uncertainty of Heisenberg with respect to angular momentum and Foureir.  We end the paper by giving some 

examples. 

 

KEYWORDS: uncertainty relation for photons, quantum mechanics of photons, Foureir theory. 

 

     INTRODUCTION
As in the standard Heisenberg form of uncertainty relation for photons is somewhat difficult identity its position 

operator. However, it is apparently, photon can be influenced by the spread of momentum and the extension in space 

that represent the famous Heisenberg phrase “Je genauer der Ort bestimmt ist, desto ungenauer ist der Impuls bekannt 

und umgekehrt.” 

 

The photon uncertainty relations is mainly divided into two defined notions: the photon wave function as mentioned 

in momentum space and then the energy density of the quantized electromagnetic field. Thus, when the second 

momentum is applied, it is generated the following form[1] 
 

∆𝑟∆𝑝 ≥ 4ℎ                                                                    (1) 

 

This work is aimed to construct a definition for the uncertainty of the photons position so that can be analogous to the 

standard definition, which done by Iwo Bialynicki-Birula, Zofia Bialynicka-Birula Heisenberg uncertainty relations 

for photons (2012) [1]. This to illustrate the importance of �̂� as the center of energy to the first momentum. Therefore, 

this method is going to serve in making uncertainty relation as close as the original form of Heisenberg, 

 

√∆𝑅2√∆𝑃2 >
𝑑

2
ℎ                                                         (2) 

 

Where 𝑑 is the number of dimensions. A characteristic feature of the uncertainty relation for photons is that the left-

hand side in this inequality in two and in three dimensions is never equal to 𝑑ℎ/2, but it tends to this limit with the 

increase of the average photon momentum. Only in the infinite-momentum frame is the uncertainty relation for 

photons the same as for nonrelativistic massive particles. However, in one dimension, the inequality (2) is saturated 

so that in this case there is no difference between photons and massive nonrelativistic particles . 

We also prove the following sharp inequality 
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√〈�̂�. �̂�〉√〈�̂�. �̂�〉 ≥
3

2
ℎ√1 +

4√5 

9
                                        (3) 

 

In nonrelativistic quantum mechanics, the inequalities obeyed by the two measures of uncertainty, ∆𝑅2∆𝑃2 and 

〈�̂�. �̂�〉〈�̂�. �̂�〉, are completely equivalent. They have equal lower bounds and they are both saturated by Gaussian 

functions. This equivalence does not hold for photons. Nevertheless, the two inequalities are intimately related. We 

shall first prove (3) and then use the information about the photon states that saturate this inequality to elucidate the 

intricate properties of the inequality (2). 

 

Study has been done by Schwinger, he came up with the rough estimate that the lower bound of ∆𝑅2∆𝑃2 is of the 

order of ℎ2. 

     

This work is endeavored to derive a related uncertainty relation for photons beams. Making use of Coherent states of 

the electromagnetic field to find a description of such beams in the limit of a large number of photons so as to prove 

the sharp inequality as follows[1], [3] 

√∆R2√∆P2 ≥
3

2
h√1 +

4√2

9
                                           (4) 

and we find the mode functions of the coherent states that saturate this inequality. 

 

The nonexistence of the local photon density in configuration space is due to the fact that in quantum electrodynamics 

the operator of the total number of photons �̂� involves not a single but a double integral: 

 

�̂� =
1

4𝜋2ℎ𝑐
∫ 𝑑3𝑟 ∫ 𝑑3𝑟′ ×: [

�̂�(𝑟, 𝑡). �̂�(𝑟′, 𝑡)

𝜀|𝑟 − 𝑟′|2
+

�̂�(𝑟, 𝑡). �̂�(𝑟′, 𝑡)

𝜇|𝑟 − 𝑟′|2
] 

=
1

2𝜋2ℎ𝑐
∫ 𝑑3𝑟 ∫ 𝑑3𝑟′ : [

�̂�†(𝑟, 𝑡). �̂�(𝑟′, 𝑡)

|𝑟 − 𝑟′|2
]                                       (5) 

 

We use systematically the Riemann-Silberstein vector (the RS vector)  

 

�̂�(𝑟, 𝑡) =
�̂�(𝑟, 𝑡)

√2𝜖
+ 𝑖

�̂�(𝑟, 𝑡)

√2𝜇
                                                (6) 

 

Which will allow us to write many formulas in a compact form. The normal ordering removes the (infinite) 

contribution from the vacuum state[1]. In contrast to the total-number operator, the total-energy operator of the 

electromagnetic field �̂� (the Hamiltonian) is an integral of a local density 

 

�̂� = ∫ 𝑑3𝑟 𝜀̂(𝑟, 𝑡)                                                          (7) 

Where 

𝜀̂(𝑟, 𝑡) =: �̂�†(𝑟, 𝑡). �̂�(𝑟′, 𝑡):                                              (8) 

 

The center of the energy operator can be introduced in any relativistic theory. All we need for this construction is the 

set of generators of the Poincar´e group. The Poincar´e group is the group of  Minkowski spacetime isometries. It is a 

ten dimensional noncompact Lie group. The abelian group of translations is a normal subgroup, while the Lorentz 

group is also a subgroup, the stabilizer of the origin. The Poincar´e group itself is the minimal subgroup of the affine 

group which includes all translations and Lorentz translations. More precisely, it is a semi direct product of the 

translations and Lorentz group. 

  

We define the operator �̂� as follows[1], [15]: 

�̂� =
1

2�̂�
�̂� + �̂�

1

2�̂�
=

1

√�̂�
�̂�

1

√�̂�
                                        (9) 
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Where �̂� is the first moment of the energy distribution, 

�̂� = ∫ 𝑑3𝑟 𝑟𝜀̂(𝑟, 𝑡)                                                      (10) 

Example (1): 

Prove that �̂� =
1

2�̂�
�̂� + �̂�

1

2�̂�
=

1

√�̂�
�̂�

1

√�̂�
 

Proof 

The symmetrization in (9) is necessary to obtain a Hermitian operator. The inverse of the Hamiltonian is well defined, 

provided we exclude the vacuum state. The spectrum of the Hamiltonian is nonnegative, therefore the positive square 

root is unique. The significance of �̂� is further underscored by its being the generator of Lorentz transformations. 

Since the operators �̂� and �̂� do not commute (the energy changes under Lorentz transformations), the equivalence of 

the two forms of �̂� in (9) is not obvious and to prove the equality of the two forms of �̂� in (9) we will first prove the 

following lemma 

𝑖𝑓 [�̂�, �̂�] = 0  𝑡ℎ𝑒𝑛  [√�̂�, �̂�] = 0                                (11)  

In the proof, we use the fact that the eigenvectors of the Hamiltonian form a basis. Acting on an arbitrary state in this 

basis |𝐸〉 (excluding the vacuum), we have 

 

(√�̂�, √𝐸) = [√�̂�, �̂�] |𝐸〉 = [�̂�, �̂�]|𝐸〉 = 0                   (12) 

Since the factor (√�̂�, √𝐸) does not vanish, it can be dropped and the validity of the lemma is established [1]. 

 

Next, we use the commutation relations between the Hamiltonian and the generator of the Lorentz transformations 

[�̂�, �̂�] = −𝑖ℏ�̂�                                                     (13) 

to obtain 

[�̂�, [
1

√�̂�
�̂�

1

√�̂�
,

1

√�̂�
]] = [

1

√�̂�
[�̂�, �̂�]

1

√�̂�
,

1

√�̂�
] =

ℏ

𝑖
[
�̂�

�̂�
,

1

√�̂�
] = 0     (14) 

Finally, using the lemma, we may replace Ĥ by √Ĥ in the first term and expand the resulting double commutator: 

 

0 = [√Ĥ [
1

√�̂�
�̂�

1

√�̂�
,

1

√�̂�
]] =

1

�̂�
�̂� + �̂�

1

�̂�
− 2

1

√�̂�
�̂�

1

√�̂�
            (15) 

The vanishing of the difference of two expressions for �̂� appearing in (9) means that they are equal. 

 

THE GENERALIZED UNCERTAINTY RELATION 
Earlier we learned about the famous Hiesenberg uncertainty principle which relates the uncertainly in position to that 

of momentum via from formula (1): 

 

∆x∆p ≥   
ℏ

2
                                                                 (16) 

 

We now generalize this relation to any two arbitrary operators A and B. First, we recall that in a given state |ψ〉, the 

mean or expectation value of an operator ο is found to be[6]: 
 

〈ο〉 = 〈ψ|ο|ψ〉                                                      (17) 

Now let’s consider the standard deviation or uncertainty for two operators A and B: 
 

(A)2 = 〈(A − 〈A〉)2〉                                           (18) 

 
(B)2 = 〈(B − 〈B〉)2〉                                           (19) 

Using 〈ο〉 = 〈ψ|ο|ψ〉 we can rewrite these two equations as: 
(∆A)2 = 〈(A − 〈A〉)2〉 = 〈ψ|〈A − 〈A〉〉2|ψ〉           (20) 
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(∆𝐵)2 = 〈(𝐵 − 〈𝐵〉)2〉 = 〈𝜓|〈𝐵 − 〈𝐵〉〉2|𝜓〉          (21) 

 

We now define the following kets: 
|X〉 =(A − 〈A〉)|ψ〉                                         (22) 

 
|Φ〉 =(B − 〈B〉)|ψ〉                                        (23) 

This allows us to write: 
(∆A)2 = 〈(A − 〈A〉)2〉 = 〈ψ|〈A − 〈A〉〉2|ψ〉 = ⟨X|X⟩         (24) 

 
(∆B)2 = 〈(B − 〈B〉)2〉 = 〈ψ|〈B − 〈B〉〉2|ψ〉 = ⟨Φ|Φ⟩        (25) 

 

Now consider the product of these terms[6], [11]: 
 

(∆A)2(∆B)2 = ⟨X|X⟩⟨Φ|Φ⟩                          (26) 

 

The Schwartz inequality tells us that: 

 
⟨X|X⟩⟨Φ|Φ⟩ ≥ |⟨X|Φ⟩|2 = ⟨X|Φ⟩⟨Φ|X⟩                       (27) 

 

Remember that the inner product formed by a ket and a bra is just a complex number, so |⟨X|Φ⟩|2 = |Z|2 = ZZ∗ For 

any complex number z, we have: 

ZZ∗ = Re(z)2 + Im(z)2 ≥ Im(z)2 = (
z+z̅

2i
)

2

            (28) 

In this case we have: 
⟨X|Φ⟩ = 〈ψ|(A − 〈A〉)(B − 〈B〉)|ψ〉                              (29) 

 

= 〈ψ|AB − A〈B〉 − 〈A〉B + 〈A〉〈B〉|ψ〉 
 

= ⟨ψ|AB|ψ⟩ − ⟨ψ|A〈B〉|ψ⟩ − ⟨ψ|〈A〉B|ψ⟩ + ⟨ψ|〈A〉〈B〉|ψ⟩ 

Now 〈A〉, the expectation value of an operator, is just a number. So we can pull it 

out of each term giving: 
⟨ψ|AB|ψ⟩ − ⟨ψ|A|ψ⟩〈B〉 − 〈A〉⟨ψ|B|ψ⟩ + ⟨ψ|〈A〉〈B〉|ψ⟩ 

= ⟨ψ|AB|ψ⟩ − 〈A〉〈B〉 − 〈A〉〈B〉 + ⟨ψ|〈A〉〈B〉|ψ⟩ 
= 〈AB〉 − 2〈A〉〈B〉 + ⟨ψ|〈A〉〈B〉|ψ⟩                      (30) 

 

Now the expectation value of the mean, which is again just a number, is simply 

the mean back again, i.e. 
⟨ψ|〈A〉〈B〉|ψ⟩ = 〈〈A〉〈B〉〉 = 〈A〉〈B〉                       (31) 

So, finally we have: 

⟨X|Φ⟩ = 〈ψ|(A − 〈A〉)(B − 〈B〉)|ψ〉 = 〈AB〉 − 2〈A〉〈B〉 + ⟨ψ|〈A〉〈B〉|ψ⟩ 
= 〈AB〉 − 2〈A〉〈B〉 + 〈A〉〈B〉 = 〈AB〉 − 〈A〉〈B〉      (32) 

 

Following a similar procedure, we can show that: 

 
⟨Φ|X⟩ = 〈ψ|(B − 〈B〉)(A − 〈A〉)|ψ〉 = 〈BA〉 − 〈A〉〈B〉    (33) 

 

Putting everything together allows us to find an uncertainty relation for A and 

B. First we have: 
(∆A)2(∆B)2 = ⟨X|X⟩⟨Φ|Φ⟩ ≥ |⟨X|Φ⟩|2 = ⟨X|Φ⟩⟨Φ|X⟩      (34) 

 

Recalling that[6] 
 

ZZ∗ = Re(z)2 + Im(z)2 ≥ Im(z)2 = (
z−z̅

2i
)

2

, we set Z∗ = ⟨Φ|X⟩. Then 
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(∆A)2(∆B)2 ≥ |⟨X|Φ⟩|2 = (
⟨X|Φ⟩ − ⟨Φ|X⟩

2i
) 

= (
(〈AB〉 − 〈A〉〈B〉) − (〈BA〉 − 〈A〉〈B〉)

2i
)

2

 

= (
(〈AB〉 − 〈A〉〈B〉) − 〈BA〉 + 〈A〉〈B〉

2i
)

2

 

= (
〈AB〉 − 〈BA〉

2i
)

2

 

= (
〈AB − BA〉

2i
)

2

 

= (
〈[A,B]〉

2i
)

2

                                                            (35) 

Taking the square root of both sides gives us the generalized uncertainty relation, which applies to any two operators 

A and B. 

 

Definition: The Uncertainty Relation Given any two operators A and B: 

 

∆A∆B ≥
〈[A,B]〉

2i
                                                    (36) 

 

Where [A, B] is the commutator of the operators A and B. 

For the operators X and P , we find that [X, P] = iℏ . So  

 
 [X,P]

2i
=

iℏ

2i
=

ℏ

2
                                                    (37) 

 

Therefore we obtain the famous Hiesenberg uncertainty principle: 

∆X∆P ≥
ℏ

2
                                                         (38) 

 

Also, we can despite all of the differences between the nonrelativistic and relativistic dynamics we may derive a sharp 

Heisenberg uncertainty relation along one direction, say x, for any relativistic system. This one-dimensional 

uncertainty relation is based solely on the commutation relations between X̂  =  R̂x and P̂  =  P̂x and has the standard 

form[1] 

√∆X2√∆P2 ≥
1

2
h                                                                 (39) 

Where 

∆X2 = 〈(∆P̂)
2
〉 , ∆X̂ = X̂ − 〈X̂〉                                       (40) 

∆P2 = 〈(∆P̂)
2

〉 , ∆P̂ = P̂ − 〈P̂〉                                         (41) 

 

The one-dimensional uncertainty relation holds for any relativistic quantum system. A simple proof of (39) uses the 

commutation relations [R̂i, P̂j] = ihδij and the non-negative expectation value of the operator: 

 

〈(∆X̂ − iλΔP̂)(∆X̂ + iλΔP̂)〉 ≥ 0                                          (42) 

Where λ is an arbitrary real number. The condition that this expression treated as a function of λ can have at most one 

real root gives (39). This inequality is saturated by the quantum state whose state vector satisfies the condition 

 

(∆X̂ − iλΔP̂)|Ψ〉 =  0.                                                   (43) 

 

The specific form of |Ψ〉 depends, of course, on the system under study. Note that we may remove the average values 

ℏ 〈X̂〉 and  ℏ〈P̂〉 from (43) by choosing |Ψ〉 in the form[1] 
 

|Ψ〉 =  exp(i〈P̂〉 X̂ h − i〈X̂〉 P̂ h⁄⁄ )|Ψ′〉                                  (44) 
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Since the inequality must hold for all vectors, replacing |Ψ〉 by |Ψ′〉 makes no difference and the two forms of the 

uncertainty relation in one dimension, namely, 

 

√∆X2√∆P2 ≥
1

2
h   and   √(X̂2)√(P̂2) ≥

1

2
h                                (45) 

 

are completely equivalent. In nonrelativistic quantum mechanics the equivalence holds in any number of dimensions. 

A spherically symmetric Gaussian function shifted in the coordinate space by 〈r〉 and in the momentum space by 〈p〉 
by the unitary transformation of the form (44) will automatically saturate the inequality (2). This equivalence, 

however, is no longer valid for relativistic systems in three dimensions[1], [10], [7]. 
To extend our analysis to two and three dimensions, we introduce the dispersion in position that involves two or three 

components of the center-of-energy vector R̂ , 

 

∆R2 = 〈∆R̂. ∆R̂〉                                                           (46) 

 

Where ∆R̂ = R̂ − 〈R〉  and the dispersion in momentum, 

∆P2 = 〈∆P̂. ∆P̂〉                                                          (47) 

 

Where ∆P̂ = P̂ − 〈P̂〉. Following the same procedure as the one used in deriving (39), we obtain (2). The proof is based 

this time on the expectation value of the following positive operator: 

 

〈(∆R̂ − iλΔP̂)(∆R̂ + iλΔP̂)〉 > 0                              (48) 

 

In contrast to the one-dimensional case, the inequalities (2) and (48) are not sharp because there is no state vector that 

is annihilated by all three components of the vector operator Â = ∆R̂ + iλΔP̂ and even by two components. This is 

due to the fact that the commutators [R̂i, R̂j] = −ihc2Ĥ−1ŜijĤ
−1 of the components of R̂ do not vanish. Should there 

exist a state vector annihilated by Â, then this vector would also be annihilated by the commutators of the components 

of Â. These commutators are proportional to the components of spin. Therefore, for any relativistic quantum system 

endowed with spin the inequality (2) cannot be saturated.  

 

THE UNCERTAINTY RELATIONS FOR ANGULAR MOMENTUM 
Recalling the generalized uncertainty relation for two operators A and B, 

∆A∆B ≥ |
〈[Lx,Ly]〉

2i
|                                             (49) 

 

we can write down uncertainty relations for the components of angular momentum using the commutators[2] −[6]. 
For example, we find 

∆Lx∆Ly ≥ |
〈[Lx,Ly]〉

2i
| =

ℏ

2
〈Lz〉                         (50) 

 

Fourier theory: 

The fact that momentum can be expressed as p = kℏ allows us to define a “momentum space” wavefunction that is 

related to the position space wavefunction via the Fourier transform. A function f(x) and its Fourier transform. F(k) 

are related via the relations: 

f(x) =
1

√2π
∫ F(k)eikxdk

∞

−∞
                                       (51) 

 

F(k) =
1

√2π
∫ f(x)e−ikxdk

∞

−∞
                                     (52) 

 

These relations can be expressed in terms of p with a position space wavefunction ψ(x) and momentum space 

wavefunction Φ(p) as: 

ψ(x) =
1

√2πℏ
∫ ∅(p)eipx ℏ⁄ dp

∞

−∞
                             (53) 

 

∅(p) =
1

√2πℏ
∫ ψ(x)e−ipx ℏ⁄ dx

∞

−∞
                            (54) 
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Parseval’s theorem tells us that[6]: 
 

∫ |f(x)|2dx
∞

−∞
= ∫ |F(k)|2dk

∞

−∞
                              (55) 

 

These relations tell us that Φ(p), like ψ(x), represents a probability density. The 

function Φ(p)  gives us information about the probability of finding momentum 

between a ≤ p ≤ b: 

P(a ≤ p ≤ b) = ∫ |∅(p)|2dp
b

a
                              (56) 

 

Parseval’s theorem tells us that if the wavefunction ψ(x) is normalized, then the 

momentum space wavefunction Φ(p) is also normalized 

 

∫ |ψ(x)|2dx
∞

−∞
= 1 ⟹ ∫ |∅(p)|2dp = 1

∞

−∞
                    (57) 

 

It is a fact of Fourier theory and wave mechanics that the spatial extension of the 

wave described by ψ(x) and the extension of wavelength described by the Fourier transform Φ(p) cannot be made 

arbitrarily small. This observation is described mathematically by the Heisenberg uncertainty principle: 

 

∆X∆P ≥ ℏ                                                    (58) 

 

We can using p = kℏ , ∆k ≥ 1. 

Example (2): 

A particle of mass m in a one-dimensional box is found to be in the ground state: 

ψ(x) = √
2

a
sin (

πx

a
) 

Find ∆x∆p for this state. 

Solution: 

Using p = iℏd dx⁄  we have: 

pψ(x) = iℏ
d

dx
[√

2

a
sin (

πx

a
)] =

−ℏπ

a
√

2

a
cos (

πx

a
)                       (59) 

and: 

p2ψ(x) = iℏ
d

dx
(

−ℏπ

a
√

2

a
cos (

πx

a
)) =

−ℏπ

a
√

2

a
sin (

πx

a
)               (60) 

⟹ 〈p〉 = ∫ ψ∗(x)pψ(x)dx                                           (61) 

 

We found in the example above that 〈p〉 = 0 for this state. 

〈p2〉 = ∫ ψ∗(x)p2ψ(x)dx 

= ∫ √
2

a
sin (

πx

a
)

ℏ2π2

a2

a

0

√
2

a
sin (

πx

a
) dx 

=
ℏ2π2

a2
∫ (

2

a
) [sin (

πx

a
)]

2

dx
a

0

 

=
2ℏ2π2

a3
∫

1 − cos (
2πx

a
)

2
dx

a

0

 

=
ℏ2π2

a3 x|
a
0

=
ℏ2π2

a2                                                             (62) 

∆p = √〈p2〉 − 〈p〉2 = √
ℏ2π2

a2 =
ℏπ

a
                                     (63) 
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〈x〉 = ∫ ψ∗(x)xψ(x)dx = ∫ √
2

a
sin (

πx

a
) x√

2

a
sin (

πx

a
) dx

a

0

 

=
2

a
∫ x (sin (

πx

a
))

2

dx
a

0

 

=
2

a

a2

4
=

a

2
                                                              (64) 

〈x2〉 = ∫ ψ∗(x)x2ψ(x)dx = ∫ √
2

a
x2 (sin (

πx

a
))

2

dx =
a2

6

a

0
(2 −

3

π2)   (65) 

∆x = √〈x2〉 − 〈x〉2 = √
a2(π2−6)

12π2 =
a

π
√

(π2−6)

12
                  (66) 

 after calculation √
(π2−6)

12
= 0.57, so ∆x∆p >

ℏ

2
. 

 

CONCLUTION 
We conclude be making the following points: 

*Our results on the uncertainty relation are based on measuring the extension of the spatial domain of the photon 

function 

*We divided  the first moment of the energy distribution instead of the moment of the energy distribution see [1]. 

*It should be noted that by dividing the first moment of the energy distribution by the total energy we obtained similar 

analysis to that one of the classical quantum mechanics. And we shown that the classical Heisenberg uncertainty 

relation with respect to Fourier is >
ℏ

2
 see example (2). 
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